Evaluation of Pitzer Ion Interaction Parameters of Aqueous Electrolytes at 25 °C. 1. Single Salt Parameters

Hee-Taik Kim and William J. Frederick, Jr.*

Department of Chemical Engineering, Oregon State University, Corvallis, Oregon 97331

Ion Interaction parameters for 304 single salts in aqueous solution have been obtained for Pitzer's equations. For most of the cases we evaluated, the range of molality extended up to saturation when data were available. The calculated activity coefficients of HCI, LIBr, $CaBr_2$, $Pr(NO_3)_3$, and MgSO₄ from our results and Pitzer's were compared to available smoothed experimental data. The comparisons show better agreement with experimental data when we use values of our parameters which were evaluated at higher concentrations than those used by Pitzer.

Introduction

The principal thermodynamic properties of interest for predicting solubilities are activity and osmotic coefficients. The lack of accurate activity coefficients can result in large errors when predicting the solubility in aqueous multicomponent ionic solutions of high ionic strength even when few chemical species are present.

Ionic interaction models provide the simplest and most coherent procedures for calculating the properties of electrolyte components. They use a single set of equations to describe the osmotic and activity coefficients of the components of single salts and mixtures with common ions. An ion interaction model for electrolyte activity coefficients was developed by Pitzer and co-workers (1-4) in the early 1970s. The Pitzer model extended the Debye-Hückel method, using a virial expansion to account for the ionic strength dependence of the short-range forces in binary and ternary ion interactions. The model is applicable to solutions of high ionic strength. Moreover, these equations can be used in iterative calculations since the ion interaction parameters are expressed as explicit functions of ionic strength and need very few parameters to estimate properties of both single and mixed electrolytes. Many publications (5-11) have shown that the Pitzer model results in excellent solubility predictions.

The purpose of this work is to obtain Pitzer ion interaction parameters from osmotic coefficient data on single electrolytes at high concentration, up to nearly saturation. We used a form of the Pitzer ionic interaction model which was developed by Harvie and Weare (5) to predict the solubility of minerals in concentrated mixed salt solutions. The ionic interaction model was fit to published osmotic coefficient data at 25 °C to obtain ion interaction parameters for solution of single salts. The ion interaction parameters from our results are stored on file in a computer as a database, and activity and osmotic coefficients can be calculated simply by identifying the salt and defining the appropriate ionic strength.

General Equations

Recently, Harvie and Weare (5) developed a chemical equilibrium model for calculating mineral solubilities in the Na–K–Mg–Ca–Cl–SO₄–H₂O system at 25 °C. This model was based on the Pitzer equations (1, 2) for aqueous electrolyte solutions. Their equations for calculating the osmotic and mean

ionic activity coefficients for single electrolyte solutions can be written as follows:

$$\phi = 1 + \frac{2}{(m_{\rm M} + m_{\rm X})} \left\{ \frac{-A^{\phi} I^{3/2}}{1 + b I^{1/2}} + m_{\rm M} m_{\rm X} (B^{\phi}_{\rm MX} + ZC_{\rm MX}) \right\}$$
(1)

$$\ln \gamma_{MX} = -|z_{M}z_{X}|A^{\phi} \left[\frac{I^{1/2}}{1+bI^{1/2}} + \frac{2}{b} \ln (1+bI^{1/2}) \right] + 4m \left(\frac{\nu_{M}\nu_{X}}{\nu} \right) \left(B_{MX} + \frac{I}{2}B'_{MX} \right) + 6m^{2} \left(\frac{\nu_{M}\nu_{X}}{\nu} \right) \nu_{M}z_{M}C_{MX}$$
(2)

In eq 1 and 2, $m_{\rm M}$ is the molality (mol/kg of solvent) of a cation with charge $z_{\rm M}$ corresponding to stoichiometric coefficient $v_{\rm M}$. Similarly, the subscript X refers to an anion. Also $v = v_{\rm M} + v_{\rm X}$ and $I = \frac{1}{2}\sum_{i}m_{i}z_{i}^{2}$ is the ionic strength. The function Z is defined by $Z = \sum_{i}m_{i}|z_{i}| = 2(\sum_{\rm M}m_{\rm M}z_{\rm M}) = 2(\sum_{\rm X}m_{\rm X}|z_{\rm X}|)$ and A^{ϕ} is the Debye-Hückel coefficient for the osmotic coefficient and is given by

$$A^{\phi} = \frac{1}{3} \left(\frac{2\pi N_0 d_w}{1000} \right)^{1/2} \left(\frac{\theta^2}{DkT} \right)^{3/2}$$
(3)

where N_0 is Avogadro's number, d_w is the density of water, and D is the static dielectric constant of water at temperature T. Also, k is Boltzmann's constant and e is the electronic charge. The value of A^{ϕ} at 25 °C is 0.392 and the term b in eq 1 and 2 is an empirical parameter equal to 1.2 at 25 °C (2). The parameters B_{MX}^{ϕ} , B_{MX} , and B'_{MX} which describe the interaction of pairs of oppositely charged ions represent measurable combinations of the second virial coefficients. They are defined as explicit functions of ionic strength by using the following equations

$$B^{\phi}_{MX} = \beta^{(0)}_{MX} + \beta^{(1)}_{MX} e^{-\alpha_1 I^{1/2}} + \beta^{(2)}_{MX} e^{-\alpha_2 I^{1/2}}$$
(4)

$$B_{\rm MX} = \beta_{\rm MX}^{(0)} + \beta_{\rm MX}^{(1)} f(\alpha_1 I^{1/2}) + \beta_{\rm MX}^{(2)} f(\alpha_2 I^{1/2})$$
(5)

$$B'_{\rm MX} = \beta_{\rm MX}^{(1)} f'(\alpha_1 I^{1/2}) / I + \beta_{\rm MX}^{(2)} f'(\alpha_2 I^{1/2}) / I$$
(6)

where

$$f(x) = 2[1 - (1 + x)e^{-x}]/x^2$$
(7)

$$f'(x) = -2[1 - (1 + x + 0.5x^2)e^{-x}]/x^2$$
 (8)

For one or both ions in univalent type electrolytes the first two terms of eq 4 and 5 and only the first term of eq 6 are considered where $\alpha_1 = 2$ (2). For higher valence type electrolytes, such as 2–2 electrolytes, the full eq 4, 5, and 6 are used and $\alpha_1 = 1.4$ and $\alpha_2 = 12$ (3).

The single electrolyte third virial coefficients, C_{MX} , account for short-range interaction of ion triplets and are important only at high concentration. They are independent of ionic strength. The parameters C_{MX} and C_{MX}^{ϕ} , the corresponding coefficients for calculating the osmotic coefficient, are related by (2)

$$C_{\rm MX} = C_{\rm MX}^{\phi} / (2|z_{\rm M} z_{\rm X}|^{1/2})$$
(9)

Table I. Ion Interaction Parameters for	1-1	Electroly	vtes at	25	°C
---	-----	-----------	---------	----	----

Table I. Ion Interaction	on Farameters Io	F 1-1 Electroly	les at 25 °C				
compd	B ⁽⁰⁾	B ⁽¹⁾	C^{ϕ}	max m	SD	R	ref
	0.000.10	0.101.50	0.000.10	00.000	0.000.05	0.0000	10
HF	0.02212	0.401 56	-0.00018	20.000	0.003 05	0.9996	12
HCI	0.203 32	-0.01668	-0.00372	16.000	0.014 43	0.9999	12
HBr	0.24153	-0.161 19	-0.00101	11.000	0.029 20	0.9994	12
HI	0.23993	0.28351	0.00138	10.000	0.01593	0.9998	12
HClO₄	0.21617	-0.227 69	0.001 92	16.000	0.03618	0.9996	12
HNO_3	0.088 30	0.48338	-0.002 33	28.000	0.02764	0.9960	12
LiCl	0.20972	-0.343 80	-0.004 33	19.219	0.05339	0.9982	12
LiBr	0.24554	-0.44244	-0.00293	20.000	0.093 91	0.9974	12
LiI	0.14661	0.75394	0.02126	3.000	0.001 55	0.9999	12
LiOH	0.050 85	-0.07247	-0.00337	5.000	0.004 94	0.9959	12
LiClO	0 204 00	0 322 51	-0.001.18	4 500	0.001.57	1.0000	12
LiNO	0 130 08	0.04957	-0.003.82	20,000	0.00639	0 9999	12
LINO	0.121.47	0.457 34	-0.003.83	19 900	0.00000	0.0007	25
Licio	0.170.40	0.200 44	-0.005.24	4 200	0.010.01	0.0001	20
	0.17049	0.22544	-0.000 24	4.200	0.001 85	1,0000	20
	0.00920	0.21073	-0.00005	5.000	0.000 96	1.0000	20
LIAC ⁻	0.11210	0.20243	-0.00519	4.000	0.00117	0.9999	12
NaF	0.031 83	0.186 97	-0.00840	1.000	0.000 29	0.9999	12
NaCl	0.07722	0.251 83	0.001 06	6.144	0.000 64	1.0000	12
NaBr	0.11077	0.13760	-0.00153	9.000	0.00448	0.9999	12
NaI	0.13463	0.19479	-0.001 17	12.000	0.00924	0.9998	12
NaOH	0.17067	-0.08411	-0.00342	29.000	0.085 91	0.9950	12
$NaClO_3$	0.01908	0.27932	0.001 81	3.000	0.000 32	0.9999	12
NaClO₄	0.25446	0.27569	-0.00102	6.000	0.00101	0.9999	12
NaBrO ₃	-0.02154	0.18207	0.006 33	2.167	0.00085	0.9973	12
NaNO₃	0.003 88	0.21151	-0.00006	10.830	0.00073	0.9985	41
NaNO	0.047 93	0.22465	-0.00226	12.340	0.00639	0.9980	25
NaH-PO	-0.04746	-0.075.86	0.006.59	6 500	0.004.07	0.9910	12
NaH-AsO	-0.079.97	0.358.66	0.022.67	1 300	0.000.29	0.9998	12
NaCNS	0.19373	0.000 00	-0.003.82	18,000	0.000 20	0.0000	19
NaBO	-0.052.80	_0.109.99	0.014.97	4,000	0.02007	0.5575	12
NaDO ₂	-0.002.09	-0.100.00	0.014 57	4.000	0.00210	0.9990	27
$N \perp D \Gamma_4$	-0.026.03	-0.100.84	0.00171	9.000	0.003 55	0.9948	27
INAAC"	0.13723	0.34195	-0.004 74	3.500	0.000 96	1.0000	12
KF	0.10013	-0.02175	-0.001 59	17.500	0.02093	0.9989	12
KCI	0.04661	0.22341	-0.000 44	4.803	0.00036	1.0000	12
KBr	0.05592	0.22094	-0.00162	5.500	0.00036	1.0000	12
KI	0.07253	0.27710	-0.00381	4.500	0.00060	0.9999	12
КОН	0.17501	-0.01634	-0.00267	20.000	0.02650	0.9995	12
KClO3	-0.09193	0.23343		0.700	0.00023	0.9999	12
$KBrO_3$	-0.11426	0.20414		0.500	0.00021	0.9999	12
KNO_3	-0.08511	0.10518	0.00773	3.500	0.00042	1.0000	12
KNO_2	0.00349	0.15708	-0.00025	34.120	0.01196	0.9776	25
KH₂PO₄	-0.11411	0.06898	0.02069	1.800	0.00024	1.0000	12
KH ₂ AsO ₄	-0.12614	0.25457	0.04002	1.300	0.00027	0.9999	12
KCNS	0.03891	0.25361	-0.00192	5.000	0.000 62	0.9999	12
KPF.	-0.13710	-0.42785		0.500	0.001 43	0.9996	12
KAca	0.152.83	0.35513	-0.00432	3.500	0.000.87	1.0000	12
RhF	0.10872	0.398.04	-0.00874	3 500	0.001.91	0.9998	12
BbCl	0.046.60	0 1 2 9 8 3	-0.001.63	7 800	0.001.01	0.00000	12
BhBr	0.038.68	0.167.23	-0.001.00	5.000	0.001 20	0.0000	19
DLI	0.000.00	0.107.23	-0.001 25	5.000	0.000 40	1 0000	12
DENIO	0.03902	0.102 24	-0.000 93	4.500	0.000.00	1.0000	12
RUNO ₃	-0.001 /4	-0.03175	0.000 24	4.000	0.002.20	0.9990	12
	-0.00303	0.00130	-0.00014	62.300	0.01944	0.9736	20
RDAC"	0.16296	0.32918	-0.00561	3.500	0.000.62	1.0000	12
CsF	0.13644	0.14166	-0.006 74	3.500	0.00169	0.9999	12
CsCl	0.03643	-0.011 69	-0.000 96	11.000	0.00365	0.9993	12
CsBr	0.02311	0.04587	0.000 92	5.000	0.00141	0.9995	12
Csl	0.021 21	0.07307	-0.00307	3.000	0.000 38	0.9997	12
$CsNO_3$	-0.13004	0.081 69	0.03018	1.500	0.00057	0.9999	12
$CsNO_2$	0.00926	0.32052	-0.000 36	36.000	0.01796	0.9330	25
CsOH	0.14768	0.34572	-0.00819	1.200	0.00037	1.0000	12
$CsAc^{a}$	0.17144	0.32896	-0.007 93	3.500	0.00063	1.0000	12
$AgNO_3$	-0.07102	-0.16793	0.00322	13.000	0.00823	0.9984	12
TICI	-3.16406	-2.43821		0.010	0.00024	0.9996	12
TlClO₄	-0.11111	0.07553		0.500	0.000 39	0.9999	12
TlNO ₃	-0.12518	-0.30145		0.400	0.00037	0.9999	12
	-0.65041	-0.11038	0.37782	1.400	0.00026	1.0000	12
TlAc^{a}	0.00878	-0.04105	-0.001 53	6.000	0.00215	0.8848	12
NH₄Cl	0.051 91	0.17937	-0.00301	7.405	0.000 93	0.9999	12
NHI	0.057 01	0.31566	-0.003 08	7.500	0,001 74	0.9998	28
NH.CIO.	-0.00697	-0.05618	-0.00071	2.100	0.000 24	0.9995	12
NHINO	-0.01476	0.138 26	0.000 29	25.954	0.00538	0.9977	12
NHISCN	0.005 28	-0.340 80	-0.000.36	23,431	0.004 90	0.9822	29
Et.NNO.	-0.040 22	-0.871.08	0.005.65	8 000	0.007.58	0.9893	28
Me.NNO.	0.012.24	-0.32933	0 000 90	7 000	0.00212	0 9991	28
MeNH_CIO	-0.03371	0.00573	0 003 45	4 000	0.00168	0.9980	30
Me.NH_CIO	-0.043.95	-0 171 01	0.000 40	7 500	0.001.00	0.0000	30
Ma NHOIO	-0 114 47	-017190	0.00240	1 200	0.001 12	0.0000	30
1/10311110104	0.11441	0.111 23	0.010 40	1.000	0.002 30	0.3332	00

compd	$\beta^{(0)}$	$\beta^{(1)}$	C^{ϕ}	$\max m$	SD	R	rei
GuCl	-0.028 55	-0.109 97	0.001 77	12.000	0.00677	0.9845	31
Li p -tol ^b	0.01223	0.46653	0.006 33	4.500	0.00302	0.9986	12
Na p-tol ^b	-0.039 58	0.47846	0.00571	4.000	0.00252	0.9951	12
Na form ^c	0.07187	0.32247	-0.00236	3.500	0.000 59	0.9999	12
Na propion ^d	0.18813	0.26772	-0.01288	3.000	0.000 46	1.0000	12
Na butyr ^e	0.26081	0.16368	-0.033 58	3.500	0.00373	0.9998	12
Na valer ^f	0.33473	-0.113 24	-0.073 94	2.000	0.00295	0.9998	12
Na capryl ^g	-0.451 20	-7.73638	0.05902	3.000	0.016 95	0.9963	12
Na pelargon ^h	0.03728	-10.3798	-0.071 64	2.500	0.01685	0.9933	12
Na capr ⁱ	0.07992	-7.40138	-0.06028	1.800	0.003 30	0.9987	12
NaH malon ⁱ	0.02166	0.17611	-0.000 89	5.000	0.000 53	0.9998	12
NaH succ ^k	0.03463	0.14036	0.000 61	5.000	0.00204	0.9994	12
NaH adip ⁱ	0.04325	0.339 88		0.700	0.000 30	0.9999	12
K p-tol ^b	-0.09842	0.47188	0.01182	3.500	0.00204	0.9995	12
KH malon	-0.00474	0.061 28	0.000 48	5.000	0.00274	0.8707	12
KH succ	0.013 09	0.10978	0.00215	4.500	0.00235	0.9972	12
KH adip	-0.03998	0.47595	0.055 23	1.000	0.000 70	0.9997	12

^aAcetate. ^b*p*-Toluenesulfonate. ^cFormate. ^aPropionate. ^eButyrate. ⁷Valerate. ^gCaprylate. ⁿPelargonate. ⁱCaprate. ⁷Malonate. ^kSuccinate. ⁱAdipate.

Table II. Ion Interaction Parameters for 1-2 Electrolytes at 25 °C

compd	$\beta^{(0)}$	β ⁽¹⁾	C^{ϕ}	max m	SD	R	ref
H ₂ SO ₄	0.14098	-0.568 43	-0.002 37	27.500	0.04874	0.9984	32
Li ₂ SO ₄	0.14473	1.29952	-0.00616	3.000	0.004 48	0.9996	13
Li ₂ C ₆ H ₄ S ₂ O ₆	0.40862	1.924 82	-0.03240	2.500	0.00311	0.9999	13
$Li_2C_{14}H_{12}S_2O_6$	0.12189	1.48771	0.03415	1.000	0.003 95	0.9992	13
Na ₂ SO ₄	0.04604	0.933 50	-0.00483	1.750	0.001 12	0.9996	13
Na_2SO_3	0.08015	1.18500	-0.00436	2.000	0.001 87	0.9996	13
Na_2CO_3	0.05306	1.29262	0.00094	2.750	0.00257	0.9993	13
Na _H PO ₄	-0.021 69	1.24472	0.00726	2.000	0.00052	0.9997	13
Na ₂ CrO ₄	0.065 26	1.63256	0.00884	4.250	0.00512	0.9997	13
$Na_2S_2O_3$	0.06347	1.32115	0.00475	4.000	0.00335	0.9997	13
$Na_2S_2O_6$	0.08526	1.18961		0.800	0.00271	0.9986	13
$Na_2S_2O_8$	0.28075	1.01750		0.090	0.00045	0.9999	13
$Na_2C_2H_4S_2O_6$	0.28782	1.31451	-0.04835	1.750	0.00518	0.9994	13
$Na_2C_6H_4S_2O_6$	0.25277	2.02265	-0.021 32	3.000	0.002 40	0.9999	13
$Na_2C_{14}H_{12}S_2O_6$	0.008 08	1.60199		0.400	0.00427	0.9926	13
$Na_{2}C_{14}H_{12}S_{2}O_{8}$	-0.368 38	0.16958		0.400	0.009 83	0.9817	13
$Na_2B_{12}H_{12}$	0.51666	1.765 89	-0.01834	1.500	0.000 91	1.0000	13
Na_2WO_4	0.203 18	0.87616	-0.019 41	2.500	0.00283	0.9999	13
Na_2HAsO_4	0.13607	1.70125	0.01202	1.000	0.00058	0.9999	13
$Na_2C_4H_2O_4^{a}$	0.23506	0.87329	-0.021 55	2.000	0.003 90	0.9997	13
$Na_2C_4H_2O_4{}^b$	0.14005	0.45288	-0.00911	2.750	0.00254	0.9998	13
K_2SO_4	0.07548	0.44371		0.692	0.001 36	0.9990	13
$K_{2}HPO_{4}$	0.05307	1.10271		0.800	0.000 49	0.9999	13
$K_2H_2P_2O_7$	-0.005 85	1.25198	0.00524	3.000	0.000 84	0.9995	13
K_2HAsO_4	0.10670	1.71714		0.800	0.001 43	0.9998	13
K_2CrO_4	0.07702	1.22681	-0.00095	3.250	0.00274	0.9997	13
$K_2Cr_2O_7$	-0.011 11	2.33306		0.507	0.01552	0.9144	13
$K_2Pt(CN)_4$	0.05955	2.25539		0.948	0.00420	0.9984	13
Rb_2SO_4	0.091 23	0.77863	-0.01282	1.500	0.000 97	0.9999	13
$Rb_2S_2O_8$	0.20464	-0.26340		0.070	0.00005	0.9999	13
Cs_2SO_4	0.14174	0.69456	-0.02686	1.831	0.00113	0.9999	13
$Cs_2S_2O_8$	0.132 83	-0.76429		0.109	0.00006	0.9999	13
$(NH_4)_2SO_4$	0.04841	1.13240	-0.001 55	5.500	0.00185	0.9996	22
$(NH_4)_2HPO_4$	-0.0425.	-0.69871	0.00527	3.000	0.00155	0.9990	13
$(NH_4)_2B_{10}H_{10}$	0.15824	1.46202	-0.01710	3.750	0.00675	0.9988	13
$(CN_3H_6)_2CO_3$	-0.07420	0.228 09	0.01380	2.500	0.00211	0.9983	13
$C_2H_6S_2O_6$	0.42897	2.006 94	-0.01984	5.500	0.007 82	0.9999	13
$C_6H_6S_2O_6$	0.41381	2.01836	-0.02071	1.750	0.00208	0.9999	13

^aSodium fumarate. ^bSodium maleate.

Evaluation of Ion Interaction Parameters

The ion interaction parameters for single electrolytes were evaluated from recently published osmotic coefficient data by using multiple regression analysis to fit eq 1 to the data at 25 °C. We used the computer program sips (Statistical Interactive Programming System), which was developed at Oregon State University, for this purpose. The best values of these fitting parameters are given in Tables I-VI. Tables I-VI also contain the maximum molality for which data are available, frequently up to saturation. Thus the maximum molalities for most cases in our evaluation go beyond that of Pitzer's evaluation (2).

The standard deviation of fit (SD) for the osmotic coefficient data and the multiple correlation coefficient, R, which is a measure of the closeness of fit to a linear relationship, are also listed in Tables I–VI. The source of the osmotic coefficient data is listed in the last column in the tables.

Table III.	Ion	Interaction Parameters	for 2-1	Electrolytes	at 25	°C
			- 10)	. (1)	

compd	$\beta^{(0)}$	$\beta^{(1)}$	C^{ϕ}	max m	SD	R	ref
MgCl ₂	0.35573	1.617 38	0.004 74	5.750	0.00360	1.0000	14
$MgBr_2$	0.4346	1.73184	0.00275	5.610	0.00585	1.0000	14
MgI_2	0.491 61	1.78273	0.00780	5.000	0.00421	1.0000	14
$Mg(ClO_4)_2$	0.49753	1.794 92	0.00875	4.000	0.00661	0.9999	22
$Mg(NO_3)_2$	0.34284	2.682 44	-0.00723	5.000	0.007 60	0.9999	22
$Mg(Ac)_2$	0.229 30	2.041.67	-0.01460	4.000	0.00370	0.9999	22
	0.32579	1.384 12	-0.00174	6,000	0.01582	0.9998	14
	0.336 99	1 848 79	0.010.85	1 915	0.001 62	1,0000	14
$Ca(C \Omega_{1})_{a}$	0.432.20	2.162.87	-0.00837	6.000	0.01730	0.9999	22
$Ca(NO_3)_2$	0.17030	2.021 06	-0.006 90	6.000	0.01346	0.9987	22
$SrCl_2$	0.28170	1.61666	-0.00071	3.500	0.00392	0.9999	14
$SrBr_2$	0.32410	1.78223	0.00344	2.100	0.000 86	1.0000	14
SrI_2	0.393 94	1.92536	0.00474	1.970	0.000 89	1.0000	14
$Sr(ClO_4)_2$	0.441 38	2.00236	-0.014 54	6.000	0.006 41	0.9999	22
$Sr(NO_3)_2$	0.11832	2.41003	-0.008 52	4.000	0.005 94	0.9970	22
	0.29073	1.249 90	-0.03040	2 300	0.00147	0.9999	14 14
BaL	0.01002 0.402.27	1.908.62	-0.00936	1.998	0.001 75	1.0000	14
$Ba(ClO_4)_2$	0.32673	2.538 59	-0.01576	5.500	0.01015	0.9998	22
$Ba(NO_3)_2$	-0.04371	1.11778		0.400	0.001 38	0.9815	22
$Ba(Ac)_2$	0.28725	2.87507	-0.04539	3.500	0.006 63	0.9994	22
$MnCl_2$	0.29486	2.01251	-0.01528	7.500	0.02434	0.9990	16
MnBr ₂	0.446 55	1.344 77	-0.02269	5.640	0.005 46	0.9999	16
$Mn(ClO_4)_2$	0.509 57	2.162.09	0.011 44	3.456	0.003 24	1.0000	16 15
NICI ₂	0.393.04	0.99773	-0.01658	5.500	0.013 86	0.9998	15 15
$NiDr_2$ Ni(CIO.).	0.44305	1.40323	-0.005 50	3 500	0.00888	1 0000	15
$Ni(NO_a)_a$	0.30978	2.106 44	-0.003 94	4.500	0.010 24	0.9999	15
CoCl	0.37351	1.259 99	-0.01803	4.000	0.00711	0.9999	15
$CoBr_2$	0.47172	0.98425	-0.01716	5.750	0.021~59	0.9997	15
CoI ₂	0.51953	1.71266	-0.00101	4.000	0.01570	0.9999	15
$Co(NO_3)_2$	0.30654	1.80197	-0.006 49	5.500	0.00491	0.9999	15
$Co(CIO_4)_2$	0.504 09	1.966 64	0.01349	3.500	0.003 25	1.0000	15
$CuCl_2$	0.230 52	2.208 97	-0.01639	5.750	0.006.64	0.9976	16 16
$CuBr_2$	0.41247	1.00270	-0.042.02	3.600	0.00380	1,0000	16
$Cu(NO_a)_2$	0.281 24	1.729.06	-0.00842	7.840	0.003.07	1.0000	16
$Cu(C_7H_7O_2S)_2$	0.08473	1.795 23		0.800	0.002 07	0.9995	16
FeCl ₂	0.35011	1.400 92	-0.01412	2.000	0.001 82	1.0000	15
ZnF ₂	0.00144	-0.087 46		0.142	0.00057	0.9327	17
$ZnCl_2$	0.08887	2.94869	0.000 95	10.000	0.01442	0.9995	17
ZnBr ₂	0.187 28	4.34674	-0.00911	6.000	0.045 79	0.9888	17
Znl_2	0.285 96	5.080 37	-0.020.04	6.000	0.072.65	0.9813	17
$Zn(OO_4)_2$ $Zn(NO_4)_2$	0.325.87	1.403 09	0.00748	4.300	0.01012	1 0000	17
$Zn(C_{2}H_{2}O_{2}S)_{2}$	0.11840	1.671.38	0.00042	0.300	0.00037	0.9999	17
CdCl ₂	0.016 24	0.439 45	0.001 09	6.000	0.001 08	0.9998	22
CdBr ₂	0.02087	-0.86302	0.00284	4.000	0.00370	0.9989	22
CdI ₂	0.149 16	0.559 35	-0.01117	2.500	0.00341	0.9995	22
$Cd(ClO_4)_2$	0.38986	1.99610	0.02075	1.750	0.00117	1.0000	17
$Cd(NO_2)_2$	0.00265	-2.15854	0.003 02	7.840	0.01903	0.9917	17
$Cd(NU_3)_2$	0.287.64	1.684.68	-0.025 87	2.500	0.00318	0.9999	17
$PhCl_{2}$	0.08010	-2.571.26		0.000	0.002.80	0.9833	16
$Pb(C O_{1})_{0}$	0.335.00	1.61813	-0.00904	10.830	0.004 61	1.0000	16
$Pb(NO_3)_2$	0.01506	-0.270 95	-0.013 30	1.830	0.004 79	0.9410	16
UO_2Cl_2	0.040951	1.74913	-0.02949	3.174	0.005 38	0.9999	16
$UO_2(ClO_4)_2$	0.66563	1.42853	0.006 99	4.000	0.01302	0.9999	16
$UO_2(NO_3)_2$	0.47803	1.59530	-0.03971	5.500	0.01444	0.9997	16
$C_8H_{22}N_2Cl_2$	0.10390	-0.10568	0.00165	4.400	0.004 52	0.9998	17
$C_8H_{22}N_2I_2$	-0.07160	-0.85778	0.01156	4.000	0.009 41	0.9792	17
$[Co(NH_3)_5NO_2]Cl_2$	-2.71103	0.63074		0.100	0.003.24	0.9991	15
$[Co(NH_2)_{\epsilon}F]Cl_2$	0.03945	0.649.84	-0.00976	1.000	0.000 37	0.9999	15
$[C_0(NH_3)_5C](ClO_4)_2$	0.035 50	0.61167		0.100	0.001 55	0.9914	15
[Co(NH ₃) ₅ CH ₃ CH ₂ COO](NO ₃) ₂	-0.01298	0.46747		0.400	0.000 84	0.9950	15
$[Co(NH_3)_5CH_3CH_2COO]I_2$	0.02342	0.55520		0.500	0.00297	0.9833	15
$[C_0(NH_3)_5CH_3CH_2COO]Br_2$	0.05240	0.48711	-0.005 39	1.200	0.000 62	0.9998	15
$[U_0(NH_3)_5UH_3UH_2UUU]U_2$	0.11194	0.344 89	-0.013 39	2.400	0.00187	0.9997	15 15
$[C_0(\mathbf{NH}_3)_{\mathcal{C}} + C\mathbf{H}_3 + C\mathbf{O}_3]_2$	0.36530	-0.41144		0.000	0.000 09	0.9996	15
$[C_0(NH_3)_{\circ}CH_3COO]Br_3$	0.046 21	0.524 15		0.600	0.001 15	0.9986	15
[Co(NH ₃) ₅ CH ₃ COO]Cl ₂	0.07197	0.399 10		0.600	0.004 22	0.9857	15
[Co(NH ₃) ₅ (CH ₃) ₂ CHCOO](NO ₃) ₂	-0.018 31	0.35251	0.00279	2.500	0.00201	0.9844	15
$[Co(NH_3)_5(CH_3)_2CHCOO]I_2$	0.00203	0.58539		0.800	0.00252	0.9832	15
$[C_0(NH_3)_5(CH_3)_2CHCOO]Br_2$	0.05108	0.36726		0.800	0.003 69	0.9880	15

Table III (Continued)

compd	β ⁽⁰⁾	$\beta^{(1)}$	C^{ϕ}	$\max m$	SD	R	ref	
[Co(NH ₃) ₅ (CH ₃) ₂ CHCOO]Cl ₂	0.10966	0.351 57	-0.01293	2.500	0.00201	0.9997	15	_
cis-[Co(C ₂ H ₈ N ₂)NH ₈ NO ₂](NO ₃) ₂	-0.075 13	0.39544		0.600	0.00070	0.9983	15	
cis-[Co(C ₂ H ₈ N ₂)NH ₃ NO ₂]I ₂	-0.138 44	0.645 45		0.600	0.002 49	0.9941	15	
cis-[Co(C ₂ H ₈ N ₂)NH ₈ NO ₂]Br ₂	-0.114 89	0.36841	0.034 49	1.000	0.00211	0.9970	15	
cis-[Co(C ₂ H ₈ N ₂)NH ₈ NO ₂]Cl ₂	-0.012 70	0.57158	0.00724	2.800	0.00157	0.9957	15	
$trans - [Co(C_2H_8N_2)NH_3NO_2](NO_3)_2$	-0.06465	0.31715		0.800	0.00112	0.9978	15	
$trans-[Co(C_2H_8N_2)NH_3NO_2]I_2$	-0.17604	1.096 89		0.300	0.00177	0.9852	15	
$trans - [Co(C_2H_8N_2)NH_3NO_2]Br_2$	-0.05842	0.393 91	0.01333	2.400	0.00083	0.9993	15	
$trans-[Co(C_2H_8N_2)NH_3NO_2]Cl_2$	0.01421	0.59051	0.004 82	2.400	0.000 84	0.9997	15	

Table IV. Ion Interaction Parameters for 3-1, 1-3 Electrolytes at 25 °C

compd	$\beta^{(0)}$	$\beta^{(1)}$	C^{ϕ}	$\max m$	SD	R	ref
LaCla	0.59602	5.6000	-0.024 64	3.800	0.0083	0.9999	18
La(ClO ₄) ₂	0.83815	6.5333	-0.01288	4.500	0.0269	0.9998	33
La(NO ₂)	0.30507	5.1333	-0.017 50	4.000	0.0314	0.9963	21
La(C.H.SO.).	0.805 06	5.2315	-0.103 89	1.100	0.0003	1.0000	34
PrClo	0.58804	5.6000	-0.02060	3.800	0.0108	0.9999	18
Pr(ClO ₄) ₃	0.82454	6.5333	-0.00914	4.500	0.0240	0.9999	33
Pr(NO ₂)	0.32615	5.1333	-0.01851	4.000	0.0290	0.9973	21
Pr(C.H.SO.)	0.809 96	5.3111	-0.09972	0.800	0.0003	1.0000	34
NdCl	0.58674	5.6000	-0.01882	3.800	0.0102	0.9999	18
Nd(ClO ₄)	0.81468	6.5333	-0.00677	4.500	0.0209	0.9999	33
Nd(NO ₂),	0.33927	5.1333	-0.01945	4.000	0.0277	0.9977	21
Nd(C ₂ H ₂ SO ₄),	0.791 01	5.4928	-0.091 35	1.100	0.0003	1.0000	34
SmCl ₂	0.593 61	5.6000	-0.01914	3.600	0.0095	0.9999	18
$Sm(ClO_4)_3$	0.82673	6.5333	-0.00487	4.500	0.0211	0.9999	33
$Sm(NO_3)_3$	0.35802	5.1333	-0.01884	4.200	0.0235	0.9987	20
Sm(C ₂ H ₅ SO ₄) ₃	0.844 86	5.8016	-0.100 39	0.800	0.0002	1.0000	34
EuCl	0.601 35	5.6000	-0.01926	3.400	0.0089	0.9999	18
Eu(C ₂ H ₅ SO ₄) ₃	0.801 48	5.6723	-0.086 13	1.100	0.0003	1.0000	34
Ga(ClO ₄) ₃	0.78535	5.2055	0.04202	2.000	0.0072	0.9999	22
GdCla	0.61142	5.6000	-0.019 24	3.400	0.0084	0.9999	18
Gd(ClO₄) ₃	0.84832	6.5333	-0.007 92	4.500	0.0197	0.9999	33
$Gd(NO_3)_3$	0.37841	5.1333	-0.01960	4.200	0.0283	0.9986	20
Gd(C ₂ H ₅ SO ₄) ₃	0.85152	5.4619	-0.102 24	0.800	0.0004	1.0000	34
TbCl	0.62231	5.6000	-0.019 23	3.400	0.0088	0.9999	18
Tb(ClO₄) ₃	0.883 29	6.5333	-0.011 12	4.600	0.0290	0.9998	19
Tb(NO ₃) ₃	0.368 50	5.1333	-0.01794	4.400	0.0291	0.9983	20
Tb(C ₂ H ₅ SO ₄) ₃	0.849 99	5.6688	-0.09676	1.100	0.0004	1.0000	34
DvCl ₃	0.628 26	5.6000	-0.01895	3.600	0.0108	0.9999	18
$D_{V}(ClO_{4})_{3}$	0.88021	6.5333	-0.00947	4.500	0.0297	0.9998	33
$D_{V}(C_{2}H_{5}SO_{4})_{3}$	0.851 38	5.9023	-0.09248	1.100	0.0003	1.0000	34
HoCla	0.62346	5.6000	-0.01675	3.600	0.0111	0.9999	18
Ho(ClO ₄) ₃	0.871 29	6.5333	-0.00699	4.500	0.0346	0.9998	33
$H_0(C_2H_5SO_4)_3$	0.84317	5.4972	-0.093 96	1.100	0.0003	1.0000	34
ErCla	0.62158	5.6000	-0.01524	3.600	0.0109	0.9999	18
Er(ClO ₄) ₃	0.87506	6.5333	-0.00671	4.500	0.0348	0.9998	33
$Er(NO_3)_3$	0.431 14	5.1333	-0.02587	4.000	0.0289	0.9983	20
$Er(C_2H_5SO_4)_3$	0.85345	5.6291	-0.09371	1.100	0.0004	1.0000	34
TmCl ₃	0.626 40	5.6000	-0.01513	3.800	0.0120	0.9999	18
$Tm(ClO_4)_3$	0.87513	6.5333	-0.00617	4.500	0.0342	0.9998	33
$Tm(NO_3)_3$	0.45394	5.1333	-0.027 76	4.000	0.0277	0.9986	20
$Tm(C_2H_5SO_4)_3$	0.84589	5.6167	-0.09279	1.100	0.0003	1.0000	oj
YbCl ₃	0.625 80	5.6000	-0.01453	4.000	0.0120	0.9999	18
Yb(ClO ₄) ₃	0.881 16	6.5333	-0.00664	4.500	0.0315	0.9998	33
Yb(NO ₃) ₃	0.46744	5.1333	-0.02812	4.000	0.0242	0.9990	20
$Yb(C_2H_5SO_4)_3$	0.85915	5.6640	-0.09078	1.200	0.0002	1.0000	34
LuCl ₃	0.621 06	5.6000	-0.013 56	4.000	0.0113	0.9999	18
$Lu(ClO_4)_3$	0.86883	6.5333	-0.001 88	4.000	0.0291	0.9998	33
$Lu(C_2H_5SO_4)_3$	0.86256	5.7210	-0.09167	1.200	0.0003	1.0000	34
AlCl ₃	0.68627	6.0203	0.00810	1.800	0.0088	0.9999	22
ScCl ₃	0.72087	6.5317	0.03367	1.800	0.0044	0.9999	22
CrCl ₃	0.690 81	2.7849	-0.04390	1.200	0.0033	0.9999	22
$Cr(NO_3)_3$	0.72490	6.3169	-0.059 93	1.400	0.0035	0.9999	22
YCl ₃	0.62570	5.6000	-0.01571	3.800	0.0117	0.9999	18
$Y(C_2H_5SO_4)_3$	0.851 87	5.6577	-0.09322	1.200	0.0003	1.0000	34
CeCl ₃	0.635 09	7.4991	-0.03001	2.000	0.0127	0.9996	22
	0.23617	-5.3975	-0.007 96	10.000	0.0087	0.99999	00 00
	0.13514	5.4136		0.700	0.0063	0.9401	22
Na ₃ AsU₄	0.20193	5.5366		0.700	0.0048	0.9932	22
	0.31668	7.4659		0.700	0.0079	0.9942	22
	0.42291	9.9809	0.045.00	1 400	0.0111	0.5534	22 99
$K_3 r e(cn)_6$	0.34910	0.0049 1 6100	-0.040 08	1.400	0.0034	0.5550	36
$\mathbf{K}_{3} \cup \mathbf{O}(\mathbf{Cn})_{6}$	0.303 92	3 8000 1.0190	-0.009 40	1.011	0.0447	0.9090	99
$C_0(en)_3 C_{13}$	0.100 92	3.0000	-0.04100	0.975	0.0005	0.0007	36
$C_0(cn)_3(1NO_3)_3$	0.10340	9 9501 9 9501		0.270	0.0018	0.9973	36
00(pii)3(0104)8	0.1-0.0-	2.0001		0.201	0.0000	0.0010	•••

Table V. Ion Interaction Parameters for 4-1, 1-4 Electrolytes at 25 °C

compd	$\beta^{(0)}$	$eta^{(1)}$	C^{ϕ}	max m	SD	R	ref
K ₄ Mo(CN) ₈	0.00575	-7.4744	0.010 15	1.400	0.0132	0.9878	22
$K_4Fe(CN)_6$	-0.006 38	-10.6019		0.900	0.0155	0.9799	22
$K_4P_2O_7$	0.059 39	-9.2939	0.01591	2.300	0.0099	0.9989	37
$K_4W(CN)_8$	0.382 99	6.1624	-0.05810	1.500	0.0192	0.9948	38
K ₄ ATP ^a	0.086 19	-4.8045	0.01494	2.400	0.0080	0.9994	<i>39</i>
Na₄ATP ^a	-0.041 54	-6.0631	0.03044	2.000	0.0093	0.9974	<i>39</i>
$Na_4P_2O_7$	0.06250	-11.1364		0.230	0.0038	0.9929	37
ThCl	0.47146	-9.4843	-0.00078	1.800	0.0179	0.9994	22
$Th(NO_3)_4$	0.35392	-7.6453	-0.01869	5.000	0.0126	0.9997	22
$Pt(pn)_{3}Cl_{4}$	0.28756	10.7131		0.100	0.0063	0.9983	38
$[N(Me)_4]_4Mo(CN)_8$	0.53495	9.6607	0.086 20	1.440	0.0120	0.9988	38

^a ATP = adenosine 5'-triphosphate.

Table VI. Ion Interaction Parameters for 2-2 Electrolytes at 25 °C

compd	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C^{ϕ}	max m	SD	R	ref
CuSO4	0.204 58	2,7490	-42.038	0.01886	1.400	0.001 75	0.9999	22, 23
ZnSO ₄	0.18404	3.0310	-27.709	0.03286	3.500	0.00212	1.0000	22, 23
CdSO₄	0.209 48	2.6474	44.473	0.01021	3.500	0.00265	0.9999	22, 23
NiSO4	0.15471	3.0769	-37.593	0.04301	2.500	0.00310	0.9999	22, 23
MgSO ₄	0.22438	3.3067	-40.493	0.02512	3.000	0.003 46	0.9999	22, 23
MnSO ₄	0.20563	2.9362	-38.931	0.01650	4.000	0.00470	0.9999	22, 23
BeSO₄	0.31982	3.0540	-77.689	0.005 98	4.000	0.00421	0.9999	22, 23
UO_2SO_4	0.331 90	2.4208	98.958	-0.017 89	6.000	0.00224	1.0000	22
CaSO₄	0.200 00	3.7762	-58.388		0.020	0.00460	0.9863	23
CoSO4	0.200 00	2.9709	-28.752		0.100	0.00248	0.9992	23

Figure 1. Comparison of experimental smoothed $\gamma_{\rm MX}$ with values calculated from Pitzer and present work for HCl at 25 °C.

In most cases where one or both lons are univalent, we used the experimental osmotic coefficient data evaluated by Hamer and Wu (12) for 1-1 electrolytes, Goldberg (13) for 1-2 electrolytes, Goldberg and Nuttall (14-17) for 2-1 electrolytes, and Spedding et al. (18-21) for 3-1 electrolytes.

For 2–2 type electrolytes, we used osmotic coefficient data from Robinson and Stokes (22) and Pitzer (23) who provided the data below 0.1 m, except for UO₂SO₄. Data for UO₂SO₄ are available only over concentration range of 0.1–0.6 m.

The positive value of the coefficients B_{MX}^{ϕ} from eq 4 indicates the net predominance of repulsive short-range interaction forces according to Pitzer and Mayorga (2).

For pure electrolytes, the two ion interaction parameters, $\beta_{MX}^{(0)}$ and $\beta_{MX}^{(1)}$, define the second virial coefficients which describe the interaction of pairs of oppositely charged ions. However, for 2–2 and higher valence electrolytes, one additional term, $\beta_{MX}^{(2)}$, which reproduces the irregular behavior in the range below 0.1 m, is added (3). From eq 5 and 6, one finds that the $\beta_{MX}^{(2)}$ term is equal to 0.000 05 $\beta_{MX}^{(2)}$ at 0.1 m and negligible above 0.1 mbecause of the large value of $\alpha_2 = 12.0$. For the case of

Figure 2. Comparison of experimental smoothed γ_{MX} with values calculated from Pitzer and present work for LiBr at 25 °C.

 UO_2SO_4 , there are no osmotic coefficient data below 0.1 m; hence the $\beta_{MX}^{(2)}$ value does not affect the relative values of osmotic and activity coefficients in the given concentration range and has no meaningful value. In the cases of CaSO₄ and CoSO₄, where available data are limited to dilute solutions (below 0.1 m), we omitted the coefficients C_{MX}^{ϕ} and chose the value of $\beta_{MX}^{(2)} = 2.0$ which was proposed by Pitzer and Mayorga (3).

The third virial coefficients, C_{MX}^{ϕ} , which account for lon triplet interactions, are usually very small and sometimes negligible. Therefore C_{MX}^{ϕ} is omitted in cases where the experimental data exist only in the range below 1.0 *m*.

In some cases these coefficients, C_{MX}^{ϕ} , are negative, suggesting some tendency toward ion-pair formation (2). This trend appeared in most aqueous rare earth electrolyte solutions at 25 °C.

For the cases of aqueous solutions of rare earth chlorides, nitrates, and perchlorates, the importance of differences in the parameters $\beta_{MX}^{(1)}$ was already considered by Pitzer and colleagues (24). Thus, in this calculations, we used the values of

Figure 3. Comparison of experimental smoothed $\gamma_{\rm MX}$ with values calculated from Pitzer and present work for CaBr_2 at 25 °C.

Figure 4. Comparison of experimental smoothed $\gamma_{\rm MX}$ with values calculated from Pitzer and present work for $\Pr(\rm NO_3)_3$ at 25 °C.

7.7, 8.4, and 9.8 for $(3/2)\beta_{\rm MX}^{(1)}$ for nitrates, chlorides, and perchlorates, respectively, following Pitzer et al. (24).

Comparison with Previously Published Ion Interaction Parameters

The ion interaction parameters for various single electrolytes were evaluated by a multiple regression method. The maximum molality fitted by our evaluation was the saturation concentration when data for saturated solutions were available. The standard deviations in fitting the osmotic coefficient for many salts, for instance, HCi, LiBr, CaBr₂, and Pr(NO₃)₃, seem larger than Pitzer's result (2). It is important to recognize, however, that the maximum molalities for these salts are beyond those of Pitzer's evaluation.

The calculated mean activity coefficients for various single electrolytes from our results are shown in Figures 1–5 to give good agreement with available smoothed experimental data at high concentration. For example, the activity coefficient of HCl can be predicted with a standard deviation of 0.0285 in ln ($\gamma_{\rm HCl}$) over the entire concentration range up to 16.0 m in the experimental smoothed data by using our evaluation parameters in Table I. However, using Pitzer's values (2) for this salt, we obtain a standard deviation of 0.220 when the maximum molality is 16.0. These results are given in Table VII. Also Figure 1 shows the comparison of experimental smoothed mean activity coefficients of HCl as ln ($\gamma_{\rm HCl}$) with values calculated from

Figure 5. Comparison of experimental smoothed $\gamma_{\rm MX}$ with values calculated from Pitzer and present work for MgSO₄ at 25 °C.

Table VII. Comparison of Standard Deviations for Estimated versus Experimental Activity Coefficients in Figures 1-5

salt	max molality	stand dev ^a
HCl	16.00	0.02854
		(0.22031)
	6.00	0.02956
		(0.00311)
LiBr	20.00	0.07224
		(0.060991)
	2.50	0.06780
		(0.00286)
$CaBr_2$	7.66	0.08760
		(0.46557)
	2.00	0.00732
		(0.00773)
$Pr(NO_3)_3$	6.20	0.17827
		(1.78436)
	1.10	0.07117
		(0.00623)
$MgSO_4$	3.62	0.00574
		(0.00794)
	3.00	0.00385
		(0.00317)

^a Standard deviations in parentheses are for salts using Pitzer's ion interaction parameter values (2) which were obtained from data up to the lower concentration given in the table for each compound. The other standard deviations are based on our evaluation of ion interaction parameters from data up to the higher concentrations reported here.

Pitzer and our work. It should be noted that the fit at lower concentrations is better using the ion interaction parameters reported by Pitzer. His parameters were obtained over a more limited range of concentration (0-6 m) than ours were.

Similar results are observed in all of the cases for which the maximum molalities go beyond that of Pitzer's evaluation. That is, Pitzer's fit gives accurate results at low concentration but poor agreements with experimental data at high concentration.

Figures 2–5 are the same kind of comparison plots of ln (γ_{MX}) as a function of the molality for LiBr, CaBr₂, Pr(NO₃)₃, and MgSO₄. In all of these comparisons, the parameters we evaluated using data at higher concentrations give us good or better fit to the experimental data over the entire concentration range than do Pitzer's parameters. Pitzer's parameters give a better fit over the more limited range of concentrations for which parameter values were obtained, however. Standard deviations for the estimated versus experimental activity coefficients in Figures 1–5 (as ln γ_{MX}) and the maximum concentrations are given in Table VII.

Ternary ion interaction parameters for various mixture with common ion will be evaluated in a subsequent paper.

Literature Cited

- Pitzer, K. S. J. Phys. Chem. 1973, 77, 268.
 Pitzer, K. S., Mayorga, G. J. Phys. Chem. 1973, 77, 2300.
 Pitzer, K. S.; Mayorga, G. J. Solution Chem. 1974, 3, 539.
- Pitzer, K. S.; Kim, J. J. J. Am. Chem. Soc. 1974, 96, 5701 (4)
- (5) Harvie, C. E.; Weare, J. H. Geochim. Cosmochim. Acta 1980, 44, 981.
- (6) Harvie, C. E.; Eugster, H. P.; Weare, J. H. Geochim. Cosmochim. Acta 1962, 46, 1603
- (7) Harvie, C. E.; Moller, N.; Weare, J. H. Geochim. Cosmochim. Acta 1984, 48, 723.
- (8) Kelly, B.; Frederick, W. J., Jr. In Application of Chemical Engineering Principle in the Forest Products and Related Industries; Kayihan, F Krieger-Brackett, B., Ed.; AIChE Forest Products Division: Seattle, WA. 1986.
- (9) Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B. AIChE J. 1979, 25, 820.
- (10) Whitfield, M. Mar. Chem. 1975, 3, 197
- (11) Whitfield, M. Geochim. Cosmochim. Acta 1975, 39, 1545.
 (12) Hamer, W. J.; Wu, Y. C. J. Phys. Chem. Ref. Data 1972, 1, 1047.
 (13) Goldberg, R. N. J. Phys. Chem. Ref. Data 1981, 10, 671.
- (14) Goldberg, R. N.; Nuttall, R. L. J. Phys. Chem. Ref. Data 1978, 7,
- 263
- (15) Goldberg, R. N.; Nuttall, R. L.; Staples, B. R. J. Phys. Ref. Data 1979, 8.923
- (16) Goldberg, R. N. J. Phys. Chem. Ref. Data 1979, 8, 1005.

- (17) Goldberg, R. N. J. Phys. Chem. Ref. Data 1976, 7, 1053.
 (18) Spedding, F. H.; Weber, H. O.; Saeger, V. W.; Petheram, H. H.; Rard, J. A.; Habenschuss, A. J. Chem. Eng. Data 1976, 21, 341.
 (19) Rard, J. A.; Weber, H. O.; Spedding, F. H. J. Chem. Eng. Data 1977, 0127. 22, 187.

- (20) Rard, J. A.; Shlers, L. E.; Heiser, D. J.; Spedding, F. H. J. Chem. Eng. Data 1977, 22, 337.
 (21) Rard, J. A.; Miller, D. G. J. Chem. Eng. Data 1979, 24, 348.
- (22) Robinson, R. A.; Stokes, R. H. Electrolyte Solutions, 2nd ed.; Butterworths: London, 1959.
 (23) Pitzer, K. S. J. Chem. Soc., Faraday Trans. 2 1972, 68, 101.
 (24) Pitzer, K. S., Peterson, J. R.; Silvester, L. F. J. Solution Chem. 1978,

 - 7,45
- (25) Staples, B. R. J. Phys. Ref. Data 1981, 10, 765
- (26) Bonner, O. D. J. Chem. Eng. Data 1979, 24, 210.
 (27) Platford, R. A. Can. J. Chem. 1969, 47, 2271.
- (28) Bonner, O. D. J. Chem. Eng. Data 1976, 21, 498.
- (29) Kalman, E.; Schwabe, K. J. Solution Chem. 1979, 8, 1.
- (30) Bonner, O. D. J. Chem. Eng. Data 1982, 27, 62.
 (31) Macaskill, J. B.; Robinson, R. A.; Bates, R. G. J. Chem. Eng. Data
- 1977, 22, 411. (32) Staples, B. R. J. Phys. Chem. Ref. Data 1981, 10, 779
- (33) Libus, Z.; Sadowska, T.; Trzaskowski, J. J. Chem. Thermodyn. 1979, 11, 1151. (34) Libus, Z.; Zak, E.; Sadowaska, T. J. Chem. Thermodyn. 1984, 16,
- 257.
- (35) Kangro, W.; Groeneveld, A. Z. Phys. Chem. (Frankfurt am Main) 1982, 32, 110. (36) Wynveen, R. A.; Dye, J. L.; Brubaker, C. H., Jr. J. Am. Chem. Soc.
- 1960, 82, 4441. (37) Bonner, O. D. J. Chem. Thermodn. 1979, 11, 559
- (38) Groves, K. O.; Dye, J. L. Brubaker, C. H., Jr. J. Am. Chem. Soc. 1960, 82, 4445.
- (39) Bonner, O. D. J. Chem. Thermodyn. 1979, 11, 563.
- (40) Rard, J. A.; Miller, D. G. J. Chem. Eng. Data 1961, 26, 33
- (41) Wu, Y. C.; Hamer, W. J. J. Phys. Chem. Ref. Data 1980, 9, 513.

Received for review February 24, 1987. Accepted September 21, 1987. We thank the following companies for their advice and financial support; Associated Pulp and Paper Mills (Australia); Crown-Zellerbach Corp.; HPD, Inc.; Scott Paper Co.; International Paper Co.; Mead Corp.; Union Camp Corp.; Westvaco Corp.; and Weyerhaeuser Co.

Densities and Viscosities of Binary Liquid Mixtures Containing Bromoform at 45 °C

Lata S. Manjeshwar and Tejraj M. Aminabhavi*

Department of Chemistry, Karnatak University, Dharwad, India 580 003

Densities and viscosities of eight binary liquid mixtures of bromotorm with carbon tetrachioride, dimethyl sulfoxide, cyclohexane, bromobenzene, dimethylformamide, methyl ethyl ketone, ethyl acetate, and methanol are presented at 45 °C as a function of composition of the mixtures. theoretical correlation is attempted with McAllister, Heric, and Auslander viscosity models.

Introduction

In the course of our studies on the thermodynamic properties of binary mixtures, we have reported at 25 °C excess volumes (1) and viscosities (2) for binary mixtures of bromoform with carbon tetrachloride, dimethyl sulfoxide, cyclohexane, bromobenzene, dimethylformamide, methyl ethyl ketone, ethyl acetate, and methanol. As an extension of that work, we have now measured the densities and viscosities for the same eight systems at 45 °C.

Experimental Section

All the chemicals used were of reagent grade. They were distilled by fractionating through a 2-ft column. Only bromoform

Table I. Some Physical Properties of the Liquids Studied

	boiling point, °C		visco kg/(osity, m/s)	refractive index ^a	
component	measd	lit. (4)	measd	lit. (4)	measd	lit. (4)
bromoform carbon tetrachloride dimethyl sulfoxide cyclohexane bromobenzene dimethylformamide methyl ethyl ketone ethyl acetate mothered	149.00 76.20 190.00 80.10 155.90 152.80 79.00 77.10	149.50 76.75 189.85 80.74 156.05 153.00 79.60 77.26	0.1873 0.0892 0.2024 0.0883 0.1081 0.0805 0.0475 0.0439	0.1890 0.0902 0.2021 0.0886 0.1040 0.0800 0.0480 0.0424	1.5950 1.4571 1.4777 1.4229 1.5580 1.4278 1.3759 1.3702	$\begin{array}{r} 1.5956\\ 1.4574\\ 1.4773\\ 1.4235\\ 1.5571\\ 1.4282\\ 1.3764\\ 1.3698\\ 1.995\end{array}$

^a Refractive index was measured with a Abbe refractometer.

(Merck) was used directly without further purification since it was available in the highest commercial purity. Purity of the solvents was ascertained by the constancy of their boiling points during final distillations. Due to the nonavailability of direct experimental data at 45 °C for most of the solvents used here, the boiling points, viscosities, and refractive indices of the pure components at 25 °C were checked against the literature values (see Table I) to ascertain their purities (4).